Conformations of macromolecules: Goal

polymer model

To understand protein folding, we require
information about the unfolded state (that has an
astronomical number of conformations)

What can we know about such unstructured states?
This includes proteins and other polymers such as
DNA.

—> Statistics

Ignoring molecular details

* macromolecule consisting of N units of length /
e what are the allowed conformations?

* can we extract average properties (e.g. size)
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Molecular details: The peptide unit revisited

bond length and angles
are described by
harmonic potentials

1
U)=—(x=x)
force constant for bond

flexing (C-C):
2761 kJ / A2 / mol

displacement of 0.05 A more
than &7 = bond lengths are

Dipole moment of 3.5 Debeye constant

For bond angles: 10x smaller
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Molecular details: The peptide unit revisited

Torsion angles

Per amino acid, two rotatable
bond in backbone

Complex potential
Rotation leads rapidly to steric

interactions = restrictions in
the allowed angles
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The Ramachandran steric map
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The Ramachandran steric map
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Conformational energy maps

What are the configurational distributions of real
peptide chains?

Recalculation of the ¢, y~-maps using an energy
function:

torsion angle potential

o o Paul John Flory
(@.y) 2 ( go) 2 ( W) 1974 Nobel Prize
+ ZEk (@.y)+E. Coulomb interactions
VA (charges and dipoles)
sterics and

VdW interactions

_ 12 6
E,=4,/n =B,/
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The glycine-glycine dipeptide
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The alanine-alanine dipeptide
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The alanine-proline dipeptide
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Chain stiffness & the characteristic ratio

To account for the increased chain stiffness due

to torsion angle restriction

Flory introduced the characteristic ratio: <R2> = CNI*

Cis dependent on the lenght
of the polymer

for long polymers, C adopts a
limiting value:
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Summary - Energies

We have investigated all Conformation —-TAS >
energetic contributions to RS ,
protein stability < Hydrophobic effect

< AH Attractive forces
We have tried to characterizea -~ |

ground state for protein - 0 +
folding — the unfolded state
{ AG| Net Free Energy

What about protein structure?
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